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Abstract Coccidioidomycosis (also called Valley fever) is caused by a soilborne fungus, Coccidioides spp.,
in arid regions of the southwestern United States. Though some who develop infections from this fungus
remain asymptomatic, others develop respiratory disease as a consequence. Less commonly, severe illness
and death can occur when the infection spreads to other regions of the body. Previous analyses have
attempted to connect the incidence of coccidioidomycosis to broadly available climatic measurements, such
as precipitation or temperature. However, with the limited availability of long-term, in situ soil moisture data
sets, it has not been feasible to perform a direct analysis of the relationships between soil moisture levels and
coccidioidomycosis incidence on a larger temporal and spatial scale. Utilizing in situ soil moisture gauges
throughout the southwest from the U.S. Climate Reference Network and a model with which to extend those
estimates, this work connects periods of higher and lower soil moisture in Arizona and California between
2002 and 2014 to the reported incidence of coccidioidomycosis. The results indicate that in both states,
coccidioidomycosis incidence is related to soil moisture levels from previous summers and falls. Stated
differently, a higher number of coccidioidomycosis cases are likely to be reported if previous bands of
months have been atypically wet or dry, depending on the location.

1. Introduction

Coccidioidomycosis is caused by the fungus Coccidioides spp., which is found in the soils of the southwestern
United States, south central Washington State, and regions of South America, Central America, and Mexico.
This disease can cause flu-like symptoms, which can persist for weeks or even months. In a minority of cases,
the infection can lead to pulmonary complications or spread from the lungs to other organ systems, leading
to conditions of greater severity, such as meningitis [Rosenstein et al., 2001; Galgiani et al., 2005] or death
[Kolivras et al., 2001; Huang et al., 2012]. Though inhalation of these spores does not always cause illness,
those who do become ill are hospitalized in over 40% of cases, with 75% of patients unable to perform their
normal daily activities for a median of 47 days [Tsang et al., 2010].

Previous research has noted relationships between climatic features for which data are widely available and the
incidence of coccidioidomycosis, noting proposed hydroclimatic and biological mechanisms by which these
infections occur. Kolivras and Comrie [2003], focusing their study upon Pima county in Arizona, hypothesized
that a dry foresummer or fall kills other microorganisms that might compete with Coccidioides. Subsequently,
winter rainfall leads to the spore formation that results in high incidence during the following year. A subse-
quent analysis by Comrie [2005] also addressed the seasonal patterns of precipitation and temperature as they
relate to the reported cases of coccidioidomycosis. They, too, noted that precipitation during the preceding
year’s summer or even the summer from 2years previous is inversely related to reported cases of coccidioido-
mycosis. This “grow and blow” hypothesis, in which wetter conditions cause spore formation and drier condi-
tions facilitate their distribution, is corroborated in Tamerius and Comrie [2011], where fall precipitation is
correlated with exposures during the subsequent year. Other works attempted to locate the ecological niche
for Coccidioides within the arid Southwest [Baptista-Rosas et al., 2007] using soil characteristics and other fea-
tures, includingmoisture. Finally, Stacy et al. [2012] employed normalized difference vegetation index as a proxy
for soil moisture, showing antecedent winter precipitation’s impact on incidence during the following year.

Unfortunately, in none of these cases were soil moisture data available in sufficient temporal and spatial
scope to allow a more direct analysis—the effects of soil moisture on coccidioidomycosis incidence. Three
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figures from some of the works cited within the literature review are worth mentioning. Figure 5 from Kolivras
et al. [2001] presents bimodal annual precipitation patterns in Arizona along with the annual pattern of valley
fever incidence. This figure illustrates that the monthly precipitation pattern in Pima county, AZ, does not
describe (at least in large part) the pattern of coccidioidomycosis incidence. Figures 1 and 2 from Comrie
[2005] illustrate, in the same county, annual and monthly precipitation patterns that do not align with
coccidioidomycosis incidence rates. As a result, soil moisture data provide an additional layer of insight to
the analysis. However, in addition to precipitation gauges at U.S. Climate Reference Network (USCRN) [Bell
et al., 2013; Diamond et al., 2013] locations in California and Arizona (Figure 1), an in situ record has
become available after 2010. Moreover, USCRN sites contain colocated precipitation instruments. Many of
these instruments predate the installation of soil moisture gauges by several years, facilitating the
calibration of a precipitation driven soil moisture model (the diagnostic soil moisture equation) [Pan et al.,
2003; Pan, 2012] that can be used to achieve two objectives. The first is to extend the soil moisture record
backward temporally to the original installation of precipitation sensors—this was done in Coopersmith
et al. [2015a]. Second, by generating such a model, gaps in the soil moisture record (e.g., a day when a
sensor was damaged by ambient meteorological conditions and a period during which readings were not
recorded) can be filled with the model’s estimate. As a result, a longer, more robust soil moisture record in
Arizona and California is now available, enabling the types of direct comparisons not previously plausible
with earlier in situ sensory resources.

2. Methodology
2.1. Defining the Coccidioidomycosis Data Set

Coccidioidomycosis is currently a reportable disease in 22 states and is nationally notifiable to the U.S.
Centers for Disease Control and Prevention through the National Notifiable Diseases Surveillance System
(NNDSS). We used the number of monthly coccidioidomycosis cases reported to NNDSS, by county, in
Arizona and California during 2000–2014 to facilitate appropriate comparisons to determine robust rela-
tionships between soil moisture conditions and coccidioidomycosis. We normalized the numbers of
reported cases by the populations of the counties in which those cases are reported. In California, 2000
and 2010 county census estimates are publically available from http://censusviewer.com/counties/CA.
The 2014 population figures by county can be obtained from http://quickfacts.census.gov/qfd/maps/califor-
nia_map.html. For years between 2000 and 2010 or between 2010 and 2014, a linear interpolation
was performed.

Figure 1. (U.S. Climate Reference Network) USCRN soil moisture gauges within county maps of (left) Arizona and (right)
California. Counties with sufficient reported coccidioidomycosis cases in Arizona and California are shaded red and blue.
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The linear interpretation was performed for every year and county in California for which reported cases of
coccidioidomycosis were available, and in analogous fashion for Arizona (data are available from and http://
censusviewer.com/counties/AZ and http://quickfacts.census.gov/qfd/maps/arizona_map.html, respectively).
From here, we converted every monthly county estimate as shown in equation (1):

normalized VFc;m; y ¼ VFc; m; y

Py
*1; 000; 000: (1)

In equation (1), VFc,m, y signifies the reported cases of coccidioidomycosis in a given county during a given
month of a given year, Py denotes the estimated population during that year, and normalized_VFc,m,y repre-
sents the number of cases reported per one million residents.

Counties with small populations and few reported cases can skew results. For this reason, counties in which
the averages of reported coccidioidomycosis cases did not exceed 10 per month were excluded from subse-
quent analysis. The resulting subset of data included three counties in Arizona (Pima, Pinal, and Maricopa)
and six counties in California (Fresno, Kern, Kings, Los Angeles, San Diego, and Tulare).

A long-term annual trend, more specifically an overall increase in coccidioidomycosis incidence (until 2012—
incidence falls thereafter), has been noted in Arizona and California during the time period in question
[Centers for Disease Control and Prevention, 2003, 2009]. It is worth noting that changes in laboratory testing
and reporting practices occurred during this time [Centers for Disease Control and Prevention, 2013]. In Table 1,
we observe a positive annual trend in coccidioidomycosis incidence in the selected counties in both
California (blue) and Arizona (red). Before performing subsequent analysis, these data are once again
detrended to ensure that the changes observed in reported cases of coccidioidomycosis are related to soil
moisture patterns rather than the consequence of long-term trends.

First, we present a simple, linear model for an annual trend in reported cases of coccidioidomycosis.

normalized VFy ¼ β0 þ β1y: (2)

In equation (2), normalized_VFy denotes the population-normalized number of reported cases of coccidioido-
mycosis in year y, while β0 and β1 represent the coefficients describing intercept and slope, respectively. Two
relationships were developed of this form, one for Arizona and another for California. Continuing, for each
county, for each month, within a year y, the number of annual reported cases was normalized as shown:

detrended VFc;m;y ¼ normalized VFc;m;y

β0 þ β1y
*

X2013

i¼2000
normalized VFi

14
: (3)

In equation (3), the detrended value for coccidioidomycosis cases reported (already normalized for popula-
tion, see equation (1)) is denoted by detrended_VFc,m,y, obtained by dividing the population-normalized

Table 1. Incidence of Coccidioidomycosis per 1,000,000 Residents, Selected Counties in Arizona and
California (2000–2014)

Year
# of Reported Cases per 1,000,000

Residents (Arizona)
# of Reported Cases per 1,000,000

Residents (California)

2000 460.5306325 89.48572189
2001 503.6564143 189.9703495
2002 635.5023968 239.6480424
2003 487.4520426 309.3800018
2004 723.4897709 367.8734306
2005 679.2749888 556.5844856
2006 997.392081 1045.732803
2007 914.9692501 619.8972283
2008 844.526981 700.8052481
2009 1656.425735 829.5482692
2010 1825.660079 1267.326671
2011 2420.537466 1045.615295
2012 1999.852074 775.0142713
2013 1012.168952 328.2901243
2014 982.4871174 248.2403409
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value for reported cases of coccidioidomycosis, normalized_VFc,m,y by the expected total for the year in
question, subsequently multiplied by the average annual, population normalized total between 2000 and

2013,

X2013

i¼2000
normalized VFi

14 .

2.2. Defining the Corresponding Soil Moisture Data Set

With soil moisture playing an increasingly important role in precision agricultural decision support
[Coopersmith et al., 2014a], complex hydrologic models [e.g., Grayson et al., 1997; Bell et al., 2010], drought
monitoring [e.g., Sheffield et al., 2004; Bell et al., 2015], and General Circulation Models [e.g., Koster and
Milly, 1997; Belair et al., 2005; Campoy et al., 2013; De Rosnay et al., 2013; Joetzjer et al., 2013], the availability
of in situ soil moisture resources has increased dramatically in the past decade. As discussed in the previous
section, an in situ network, the U.S. Climate Reference Network (USCRN), formed the basis of this inquiry
[Diamond et al., 2013; Bell et al., 2013]. USCRN provides quality controlled soil moisture and precipitation
measurements at multiple for locations across the United States. USCRN soil moisture measurements are
produced in triplicate at each recorded depth (5 cm, 10 cm, 20 cm, 50 cm, and 100 cm). For the purpose of this
study, only the 5 cm soil moisturemeasurement was used, as this depth corresponds best with the capacity of
dust particles to become airborne. Please review the descriptions in Bell et al. [2013] for more specific infor-
mation about the operation, quality assurance/quality control procedures, and logistics of the USCRN
soil instrumentation.

As the soil moisture gauges contain colocated precipitation instruments, it is possible to calibrate models that
transform a time series of antecedent precipitation into a soil moisture time series. One such model, devel-
oped by Pan et al. [2003] and subsequently updated by Pan [2012], is the diagnostic soil moisture equation.
As a simple, lumped-bucket model, this equation convolutes the antecedent precipitation series and, via six
parameters that can be calibrated via a genetic algorithm [Coopersmith et al., 2014b], returns a soil moisture
estimate as shown in equations (4) and (5).

θest ¼ θre þ ϕe � θreð Þ 1� e�c4β
� �

(4)

β ¼
Xi¼n�1

i¼2

Pi
ηi

1� e�
ηi
z

� �
e�

Xj¼i�1

j¼1

ηj
zð Þ

� �
þ P1

η1
1� e�

η1
z

� �
: (5)

In equation (4), θest represents the model’s soil moisture estimate via three parameters (θre,ϕe, and c4). Those
three parameters signify the residual soil moisture (the level below which moisture levels will not fall, even
after prolonged absences of precipitation), the porosity (the maximum quantity of moisture the soil can hold
when saturated), and a drainage rate (note that a soil with c4 = 0 drains infinitely rapidly, returning instantly to
θre, a soil where c4 is large drains extremely slowly, remaining at ϕe in perpetuity). The “beta series,” β, in
equation (5), convolutes an exponentially decaying series of precipitation totals, Pi, over a series of receding
time stamps, i, from 1 to n (the maximum temporal distance at which rainfall can be considered relevant—
that is, we ignore rainfall occurring farther back in time than n hours). The prediction depth is signified by
z, and the “eta series,” ηi, a sinusoidal estimate with a period of 1 year defining moisture losses due to evapo-
transpiration and deep drainage. The eta series contains the remaining three parameters, defining the sinu-
soid’s amplitude, horizontal, and vertical shift (its period is known to be 1 year). For further information
regarding the calibration of these models and their implementation, please review the original literature
[Pan et al., 2003; Pan, 2012] or the literature describing their more recent, machine learning-based updates
in Coopersmith et al. [2014b].

Parameters calibrated in this manner are shown to be viable for modeling soil moisture in other locations,
provided that those locations are hydroclimatically and texturally similar to the calibration site Coopersmith
et al. [2014b]. Although the USCRN soil moisture gauges sites included in this analysis are not perfect edaphic
matches for included counties, given the arid climate of the American southwest, perfunctory similarity will
suffice. In turn, these models have been used to extend the soil moisture records at these sites back to the
initial installation of precipitation instruments [Coopersmith et al., 2015a] or to validate the performance of
remotely sensed satellite estimates [Coopersmith et al., 2015b]. For the purposes of this analysis, these mod-
eled estimates will allow us to consider the performance of two related soil moisture time series in estimating
future reported cases of coccidioidomycosis. The first series denotes the modeled estimates, using the
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parameters calibrated at the location relevant location. The second series is a “merged” series, utilizing the in
situ estimate when one is available and the modeled estimate when one is not.

For selected counties in Arizona and California (Figure 1) with reported coccidioidomycosis cases, a soil
moisture record is selected using the most geographically proximate in situ record from USCRN (Figure 1).
In Arizona, the nearest in situ record is located at the USCRN gauge near Tucson (USCRN #1011, nearest to
Maricopa, Pima, and Pinal counties). In California, the nearest in situ records are located near Yosemite
Village (USCRN #1508, nearest to Fresno, Kings, and Tulare counties), Fallbrook (USCRN #1528, nearest to
Los Angeles and San Diego counties), and Santa Barbara (USCRN #1529, nearest to Kern county). The next
section discusses the possible relationships to be explored with those soil moisture data.

Given the spatial disparity between these counties and the chosen USCRN sensors for which model estimates
extend historical records, it is prudent at this stage to assess the capacity of these distant sensors to approx-
imate the local soil moisture of interest. First, the Advanced Microwave Scanning Radiometer–EOS (AMSR-E)
satellite estimates of soil moisture (available between June 2002 and October 2011) are extracted for the
center of each of the counties considered. As the in situ records at these USCRN locations typically begin
in 2010 or 2011, the remotely sensed soil moisture values from AMSR are compared with the model estimates
produced to extend the historical records at the USCRN locations utilized for the purposes of this analysis. In
Coopersmith et al. [2015b], these model estimates were compared to AMSR-E data at the USCRN locations
themselves. The average accuracy reported in that analysis, after inclusion of an optimal gain and offset,
was 0.047m3/m3. The corresponding statistics, using AMSR-E within the county rather than at the USCRN
location itself, are reported in Table 2.

Of the nine counties listed, the RMSE values between the local AMSR-E estimates and the model estimates at
the nearest USCRN sensor are roughly in line with the reported RMSE values between USCRN model
estimates and the local AMSR-E retrievals. Thus, these six counties are retained for further analysis. Kern,
Los Angeles, and San Diego, are subsequently removed via this criterion.

2.3. Defining Relationships to Consider

With soil moisture records in place, the next step is to consider the various types of relationships for potential
correlations. Analogous to the 8 day averages of soil moisture utilized in Wang et al. [2007], this analysis
focuses upon the monthly average soil moisture value. As the period of record for coccidioidomycosis inci-
dence falls between 2000 and 2014, ideally, the soil moisture record with which to compare these figures
should cover the maximum proportion of these years. For this reason, the extended records at the USCRN
gauges (which begin when precipitation data are first available) are preferable to the in situ records for soil
moisture. In turn, just as Wang et al. [2007] utilized period averages with variable daily lags, the following
monthly aggregations and lags are considered: (a) the number of months to aggregate of the independent
variable (1 to 6). That is, the average soil moisture from January to March (an aggregation of 3months), only
February (an aggregation of 1month), or the entire first half of the calendar year (an aggregation of
6months); (b) the number of months to aggregate of the dependent variable (1 to 6, a normalized estimate
of reported coccidioidomycosis cases per 1,000,000 residents, with the annual trend removed), that is, we can
estimate the total in August and September (an aggregation of 2months) or a longer/shorter window; (c) the
number of months of “lag” time between the independent range and the dependent range (0 to 36months),
for example, using the total number of hours above 10% between April and June of year X to forecast

Table 2. Comparison of USCRN In Situ and AMSR-E Satellite Estimatesa

County USCRN RMSE, AMSR-E, Ascending RMSE, AMSR-E, Descending

Fresno 1508 0.050 0.051
Kern 1529 0.073 0.074
Kings 1508 0.051 0.052
Los Angeles 1528 0.073 0.072
Maricopa 1011 0.036 0.036
Pima 1011 0.035 0.035
Pinal 1011 0.035 0.035
San Diego 1528 0.073 0.077
Tulare 1508 0.046 0.051

aBolded values are from USCRN sensors used in the subsequent analysis.
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Table 3. Soil Moisture Levels and Coccidioidomycosis Impacts in Arizona and California

Year Month
Modeled SM
(m3/m3), AZ

Detrended Cocci
Incidence, AZ

Modeled SM
(m3/m3), CA

Detrended Cocci
Incidence, CA

2002 9 0.018688498 238.6835648 0 0
2002 10 0.030761552 291.4209886 0 0
2002 11 0.042590859 402.4278317 0 0
2002 12 0.079504266 314.7253879 0 0
2003 1 0.040706236 217.6314323 0 0
2003 2 0.047960111 118.9956718 0 0
2003 3 0.058734527 139.3982875 0 0
2003 4 0.023598582 93.20229356 0 0
2003 5 0.021576505 111.0593612 0 0
2003 6 0.032606535 140.6273795 0 0
2003 7 0.034824275 205.3632434 0 0
2003 8 0.063790721 316.7377084 0 0
2003 9 0.070075447 211.4483979 0 0
2003 10 0.073544563 213.733152 0 0
2003 11 0.07633426 195.8249965 0 0
2003 12 0.077928581 285.6830261 0 0
2004 1 0.080290731 211.9314125 0 0
2004 2 0.086659528 224.0742793 0 0
2004 3 0.091885505 178.9580231 0 0
2004 4 0.076389722 147.1321316 0 0
2004 5 0.048595993 249.0750831 0 0
2004 6 0.050074095 311.3864712 0 0
2004 7 0.053449079 297.3654862 0 0
2004 8 0.075714144 239.3006426 0 0
2004 9 0.08334769 272.7333319 0 0
2004 10 0.088344984 284.3028402 0 0
2004 11 0.114069337 244.1796974 0 0
2004 12 0.134465145 282.5061027 0 0
2005 1 0.14126691 160.2114796 0 0
2005 2 0.138735481 112.0010048 0 0
2005 3 0.069427576 119.1015506 0 0
2005 4 0.026501304 140.9278206 0 0
2005 5 0.029467254 126.9506981 0 0
2005 6 0.034264098 159.824663 0 0
2005 7 0.047369151 205.4515105 0 0
2005 8 0.121873645 271.667615 0 0
2005 9 0.084187959 173.3887346 0 0
2005 10 0.085661459 246.0509143 0 0
2005 11 0.075487162 394.0148302 0 0
2005 12 0.049257706 360.4681667 0 0
2006 1 0.047195764 223.8126685 0 0
2006 2 0.046754592 406.0198996 0 0
2006 3 0.06377237 321.6875436 0 0
2006 4 0.02168984 303.6157508 0 0
2006 5 0.020238768 250.91043 0 0
2006 6 0.033135632 262.8592065 0 0
2006 7 0.063432066 300.9350003 0 0
2006 8 0.07439608 237.5421378 0 0
2006 9 0.066061927 174.8022503 0 0
2006 10 0.049548081 181.9017814 0 0
2006 11 0.019553513 229.6054128 0 0
2006 12 0.028981184 385.3860391 0 0
2007 1 0.082276498 268.2745264 0 0
2007 2 0.045478735 218.1070116 0 0
2007 3 0.031602907 188.4985045 0 0
2007 4 0.030831453 222.0207718 0 0
2007 5 0.019434795 215.5676418 0 0
2007 6 0.020675259 208.739997 0 0
2007 7 0.059385878 194.8435303 0 0
2007 8 0.102940045 202.1052942 0 0
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Table 3. (continued)

Year Month
Modeled SM
(m3/m3), AZ

Detrended Cocci
Incidence, AZ

Modeled SM
(m3/m3), CA

Detrended Cocci
Incidence, CA

2007 9 0.056300585 154.3844403 0.014422721 73.24354314
2007 10 0.019089717 258.6904939 0.024020918 122.4520226
2007 11 0.020181495 328.867631 0.033769359 88.38095769
2007 12 0.1268061 284.8079076 0.093992526 141.1553566
2008 1 0.058864981 186.2714123 0.127940179 98.77108245
2008 2 0.087335354 183.1635086 0.136142251 84.16943733
2008 3 0.0312175 156.0432876 0.092026298 124.1939281
2008 4 0.018939927 184.5926911 0.031635149 138.2376122
2008 5 0.018688498 181.4596586 0.050772315 88.72175773
2008 6 0.035782162 169.1139229 0.055040674 148.2855919
2008 7 0.0974885 187.4741605 0.015210755 154.9923056
2008 8 0.060875011 168.7508884 0.014531239 209.7241664
2008 9 0.07512169 162.096754 0.014422721 187.3930841
2008 10 0.020771004 158.8994241 0.04266662 283.9230749
2008 11 0.026019206 234.5093129 0.090540463 229.5195126
2008 12 0.073159039 357.3659874 0.087234657 226.0364025
2009 1 0.090310458 208.6114782 0.099837552 205.0517373
2009 2 0.080561563 142.2644019 0.153602611 169.053763
2009 3 0.027221068 172.1079466 0.141206739 162.2426741
2009 4 0.030790148 200.0208542 0.106122067 167.963602
2009 5 0.024223187 255.0951336 0.099469892 186.0101461
2009 6 0.019587086 504.074028 0.070716571 240.6823074
2009 7 0.057748034 463.3385302 0.015893807 169.1293229
2009 8 0.042787633 400.7169535 0.019870677 256.5202823
2009 9 0.058145327 439.1085566 0.019882989 171.3287105
2009 10 0.022637066 435.7276248 0.079732534 177.9751628
2009 11 0.02392507 558.6542474 0.033060175 132.8129363
2009 12 0.063440636 449.4906599 0.1092558 163.2937272
2010 1 0.07671407 326.2683504 0.109604861 100.7023111
2010 2 0.119726452 313.5462057 0.128848332 96.26017989
2010 3 0.070742721 264.8940373 0.135993041 75.9748846
2010 4 0.024556352 270.9795176 0.151917328 132.6715156
2010 5 0.020438031 287.2457407 0.134641752 82.5704694
2010 6 0.018688498 327.7077512 0.058616255 164.3313195
2010 7 0.027323524 344.1021857 0.014422721 210.2631608
2010 8 0.064003282 345.901653 0.014422721 454.4814074
2010 9 0.028944447 355.8207601 0.014422721 593.7086878
2010 10 0.065683901 431.1084195 0.101268402 582.5730995
2010 11 0.023181293 484.2991517 0.118288892 333.3063386
2010 12 0.048068155 586.3832791 0.140973261 354.1640009
2011 1 0.055805589 502.2475781 0.090887304 158.7225719
2011 2 0.024228836 401.9814256 0.10315471 133.4254945
2011 3 0.036633795 481.0993594 0.160069858 106.374115
2011 4 0.034765333 473.9231599 0.132507947 112.7479356
2011 5 0.018688498 452.6495429 0.10387384 83.61927096
2011 6 0.018688498 455.186837 0.09917383 168.5966146
2011 7 0.051480698 480.1178372 0.06641851 171.2034696
2011 8 0.04691028 482.0019436 0.015082458 365.7117288
2011 9 0.062969664 335.0672556 0.044938206 397.2492863
2011 10 0.029757534 408.5573527 0.0677866 303.5982769
2011 11 0.081169463 465.1782025 0.054869883 258.751319
2011 12 0.113030655 441.0465071 0.01651865 229.0002529
2012 1 0.053559181 379.7756753 0.067839679 343.8025035
2012 2 0.024232378 375.8936545 0.105581676 264.8739533
2012 3 0.038539565 455.2590395 0.13065999 159.1349569
2012 4 0.03481477 469.8929287 0.149004521 128.2456794
2012 5 0.019257559 436.8999502 0.062313905 149.4690067
2012 6 0.029961968 388.2121592 0.05113879 152.0041124
2012 7 0.056216902 393.0521333 0.016870897 84.79048292
2012 8 0.079493489 252.761961 0.018147495 91.49446931
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coccidioidomycosis in August and September and year X+ 1 would represent a lag of 13months; and (d) the
12 possible months (or aggregations thereof), to wit, utilizing a 3month window for independent or
dependent variables, one can consider January–March versus February–April versus March–May, etc.

The next section will outline how this analysis will refine that profusion of potential relationships into a
coherent set of insights relating soil moisture estimates to reported cases of coccidioidomycosis.

2.4. Focusing the Lens

Ourmethods are quite similar to those ofWang et al. [2007], beginning with the removal of a long-term trend,
the application of correlation analysis to lagged data, and even the usage of composites of temporal
ranges by aggregating between time stamps for independent variable generation. In Table 3, we visualize
the average modeled soil moisture by month and the annually detrended number of reported coccidioido-
mycosis cases.

In California (upper panel), we observe that soil moisture arrives in clusters of roughly 6months, which aligns
with hydroclimatic research addressing Pacific climates, where precipitation arrives primarily during the
fall/winter seasons [e.g., Coopersmith et al., 2012]. In Arizona (lower panel), we observe soil moisture clusters
of shorter periods of 3months, aligning with the monsoon rainfall pattern of the arid Southwest. Thus, for
California and Arizona, we will aggregate soil moisture monthly averages into clusters of six and three,
respectively. In terms of the dependent variables, in California (upper panel), we notice clusters of roughly
3months of coccidioidomycosis incidence that rise and fall in relation to the soil moisture levels observed,
with lags of several months. In Arizona, cocci responses seem inversely related (drier periods are succeeded
by higher coccidioidomycosis incidence), with somewhat longer lag periods.

To distill a large number of comparisons, we focus on those that show the more significant, consistent, robust
relationships. If fewer than 18 comparisons are available, the comparison cannot be considered for use in the
study. A threshold of 18 has now been adopted to ensure at least one pair of independent and dependent

Table 3. (continued)

Year Month
Modeled SM
(m3/m3), AZ

Detrended Cocci
Incidence, AZ

Modeled SM
(m3/m3), CA

Detrended Cocci
Incidence, CA

2012 9 0.059601122 204.2646714 0.014742877 111.4972694
2012 10 0.018797563 296.1976982 0.035507406 87.61401271
2012 11 0.031084186 320.5746086 0.094424432 88.10425661
2012 12 0.074000038 200.897139 0.157289468 93.24951635
2013 1 0.061580616 215.8309765 0.079910734 60.37819332
2013 2 0.097161785 189.9210826 0.06503031 74.84739532
2013 3 0.043805947 103.0214633 0.099472384 69.00899078
2013 4 0.023682717 102.1139398 0.102119484 65.23757778
2013 5 0.018688498 134.5468404 0.029101883 71.32973163
2013 6 0.018688498 180.7191826 0.032773113 88.66521014
2013 7 0.057232007 131.1258734 0.02314116 46.88582094
2013 8 0.04777314 197.0633332 0.014627682 47.77677455
2013 9 0.044216847 137.3913779 0.032197353 28.87948204
2013 10 0.018688498 129.1651728 0.036543682 35.1306167
2013 11 0.055693437 248.1182123 0.055573595 45.90899133
2013 12 0.089243157 222.1762911 0.056617057 74.27440333
2014 1 0.026467379 190.936132 0.020651353 42.60643006
2014 2 0.022966894 170.9610033 0.137219354 79.96855895
2014 3 0.034498843 223.2393164 0.119463294 34.32090332
2014 4 0.019020564 157.5879583 0.11920279 32.97535816
2014 5 0.018920869 232.5313611 0.090978637 55.46088978
2014 6 0.018688498 161.9626934 0.025230896 43.39143342
2014 7 0.093122684 93.59387799 0.03509858 58.15198009
2014 8 0.06704296 146.0930835 0.018512132 45.60214862
2014 9 0.078068763 109.0883894 0.030480576 49.30911926
2014 10 0.070803184 91.14695079 0.037730295 30.08484286
2014 11 0.020658284 132.0806601 0.077829588 25.89108171
2014 12 0.095039508 118.7038301 0.12214687 13.89858433
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ranges per county per year, from 2007
(the year at which precipitation data
become available in California) and
2014 (when the incidence data set con-
cludes). For example, if we are consider-
ing comparisons of coccidioidomycosis
incidence from February to March with
the average in situ soil moisture esti-
mate from June to August of the pre-
ceding summer, over all counties in
California, a single data point is valid if,
and only if, coccidioidomycosis esti-
mates are available in that county in
February and March, and in situ soil
moisture estimates are available within
that same county in June, July, and
August of the previous year. As stated,
18 such points are required before
comparisons can be further considered.

Finally, the statistically significant rela-
tionships that remain are examined in
greater detail. Relationships that “recur”

or show higher rates of significance/correlation between the independent variable (a soil moisture
measurement metric) and the dependent variable (reported cases of coccidioidomycosis) become the
relationships concluded to be most robust. Note a relationship “recurs” if the same independent variable
demonstrates strong, statistically significant relationships between numerous temporal windows of the
subsequent year.

3. Results

In this section, the results of the correlation analysis are deployed to evaluate the performance of those
comparisons for the two states in question.

3.1. California

In Tables 4 and 5, we observe the positive correlation between average modeled soil moisture levels over a
specific 6month period (December-to-May) and the number of reported cases of coccidioidomycosis in the
subsequent 3month bands covering the summer and fall. Table 5 demonstrates the relationship between
summer/fall incidence of coccidioidomycossis and the average soil moisture the preceding winter and
spring. The results of these relationships are summarized in Table 1, all of which are statistically significant
at the α=0.05 level.

It is worth noting that all of these relationships illustrate summer/fall periods of coccidioidomycosis incidence
responding to the same 6month band beginning during the fall of the preceding year. Interestingly, while the
“wetter” 6month bands do not necessarily cause a higher number of reported cases, the “drier” bands are
fairly consistent with respect to their lower number of cases reported. It is also important to note that, in
Southern California, a disproportionate quantity of rainfall is observed during the fall/winter/early-spring

Table 4. Annually Detrended Cases of Coccidioidomycosis (July–
September) Versus 6Month Average Soil Moisture (December–
May), California

Modeled SM Reported Cases

0.115 115.5262
0.128 298.9765
0.122 227.4943
0.089 56.39648
0.089 12.70564
0.091 25.9088
0.089 41.74433
0.115 46.81051
0.128 36.58167
0.122 27.86085
0.089 21.22929
0.089 13.19565
0.091 13.49517
0.089 32.53876
0.115 36.65603
0.128 83.92622
0.122 56.03302
0.089 18.30164
0.089 15.2794
0.091 11.61712

Table 5. Statistically Significant Relationship Displaying Recurrent Patterns, California

Ind_var Range Ind_var Type Dep_var Range ρ p Value n

Dec–May (y�1) Average Soil Moisture (m3/m3) Jun–Aug 0.503 0.020 21
Dec–May (y�1) Average Soil Moisture (m3/m3) Jul–Sep 0.539 0.012 21
Dec–May (y�1) Average Soil Moisture (m3/m3) Aug–Oct 0.535 0.013 21
Dec–May (y�1) Average Soil Moisture (m3/m3) Sep–Nov 0.529 0.014 21
Dec–May (y�1) Average Soil Moisture (m3/m3) Oct–Dec 0.501 0.021 21
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months, which would, in turn, suggest
the greatest variability of soil moisture
between December and May, which, in
turn, displays consistent relationships
with respect to coccidioidomycosis inci-
dence during the summer and fall
thereafter.

3.2. Arizona

In Tables 6 and 7, we observe analogous
examples in Arizona, albeit with an
inverted statistical relationship. Once
again, we note that one particular band
of average soil moisture values during
the summer season when much of the
Arizona rain falls presents statistically
significant relationships with respect to
coccidioidomycosis incidence in each
month between January and May. All
of these relationships are statistically
significant at the α=0.01 level. Though
the correlation is inverted, this would
seem to corroborate the grow and blow
hypothesis proposed by Tamerius and
Comrie [2011], in which drier periods
allow spores to travel freely.

Additionally, much like the Californian
results, in which wetter periods may or
may not yield subsequent periods of
higher incidence, but drier periods were
consistently succeeded by lower num-
ber of reported cases of coccidioidomy-
cosis, a similar pattern emerges in
Arizona. To wit, in Table 6, an extremely
dry summer may or may not cause
the highest levels of coccidioidomycosis
incidence in the subsequent winter and
spring, but an atypically wet summer
produces consistently low incidence
rates. In California and Arizona, wet
and dry conditions, respectively, are
necessary, but not sufficient conditions
for heightened incidence rates.

Table 6. Annually Detrended Cases of Coccidioidomycosis (February)
Versus 6Month Average Soil Moisture (May–July), Arizona

Modeled SM Reported Cases

0.030 90.0965
0.051 35.88342
0.037 144.1528
0.039 74.286
0.033 66.92434
0.051 55.48029
0.034 144.2103
0.022 194.4925
0.030 157.8867
0.035 64.43757
0.032 65.09426
0.030 70.94503
0.051 41.20407
0.037 125.5012
0.039 64.94447
0.033 58.86291
0.051 41.38267
0.034 80.80375
0.022 79.60832
0.030 98.13995
0.035 55.82523
0.032 54.94693
0.030 63.03275
0.051 34.91351
0.037 136.3659
0.039 78.87655
0.033 57.37626
0.051 45.40144
0.034 88.53221
0.022 127.8806
0.030 119.867
0.035 69.65828
0.032 50.91981
0.030 90.0965
0.051 35.88342
0.037 144.1528
0.039 74.286
0.033 66.92434
0.051 45.40144
0.034 88.53221
0.022 127.8806
0.030 119.867
0.035 69.65828
0.032 50.91981
0.051 45.40144
0.034 88.53221
0.022 127.8806
0.030 119.867

Table 7. Statistically Significant Relationship Displaying Recurrent Patterns, Arizona

Ind_var Range Ind_var Type Dep_var Range ρ p Value n

May–Jul (y�1) Average Soil Moisture (m3/m3) Jan �0.521 0.002 33
May–Jul (y�1) Average Soil Moisture (m3/m3) Feb �0.552 0.001 33
May–Jul (y�1) Average Soil Moisture (m3/m3) Mar �0.532 0.001 33
May–Jul (y�1) Average Soil Moisture (m3/m3) Apr �0.449 0.009 33
May–Jul (y�1) Average Soil Moisture (m3/m3) May �0.501 0.003 33

GeoHealth 10.1002/2016GH000033

COOPERSMITH ET AL. VALLEY FEVER AND SOIL MOISTURE 60



4. Discussion
4.1. The 21st Century Precipitation

Utilizing publically available California
monthly precipitation data NOAA’s
monthlydata fromappropriately located
gauges in Arizona (http://w2.weather.
gov/climate/xmacis.php? wfo=psr) and
California (http://w2.weather.gov/cli-
mate/xmacis.php?wfo=lox), one can
observe qualitatively, some of the cli-
matic patterns in play during the time
periods in question. With the USCRN
precipitation record in California begin-
ning in 2007 at most installation sites,
Table 8 presents the precipitation

observed during each year from Southern California (near Los Angeles) and Arizona (near Phoenix). In
Table 3, we noted a gradual increase in the incidence of coccidioidomycosis, observing a spike in cases
reported in 2011 (followed by a sharp decrease in 2012 and 2013). In California, as our previous analysis
would suggest, an atypically wet year in 2011 may have (at least temporarily) slowed a long-standing positive
trend. Table 8 presents the rainfall during each year. However, the increase in 2011 (Table 9) may be exacer-
bated by an exceptionally wet 2010 followed by a drier summer in central Arizona (though not in the south),
perhaps facilitating wider spreading of spores by wind, as hypothesized in Kolivras and Comrie [2003]. The
steep dropoff thereafter may be, perhaps, partially explained by the extremely wet 2012. Changes in surveil-
lance methodologies, including changes in testing and reporting practices, may also have partially contribu-
ted to the 2011 peak [Centers for Disease Control and Prevention, 2013]. For example, California transitioned to
a laboratory-based reporting system during 2010, though some jurisdictions such as Kern county had already
been implementing such a reporting system [Centers for Disease Control and Prevention, 2013].

The Pacific Decadal Oscillation (PDO) is known to influence the variability of precipitation in the Southwest,
specifically during Arizona winters [Sheppard et al., 2002]. An image of the PDO from 1870 through the time
period under inspection in this study can be located at https://www.ncdc.noaa.gov/teleconnections/pdo/.
The time period during which the spike in reported cases of coccidioidomycosis is observed in Arizona
and California corresponds with the nadir of the Pacific Decadal Oscillation (PDO). Shortly thereafter, as
the sign of the PDO switches, a sharp decrease in coccidioidomycosis incidence is observed (Table 1).
The PDO’s connection to historical outbreaks of coccidioidomycosis could be researched by, in addition to
removing a long-term annual trend as shown in equations (2) and (3), fitting a relationship between the
PDO and coccidioidomycosis incidence. “Sequential normalization” specifies that multiple superimposed

trends can be removed in order of
the longest repeating period; see
Coopersmith et al. [2011], leveraging a
method from Maidment and Parzen
[1984]. This would allow coccidioidomy-
cosis incidence to explore in terms of
moisture and anthropogenic features,
in the absence of climatic trends.

4.2. Limitations

Limitations of coccidioidomycosis sur-
veillance data include the passive nat-
ure of the surveillance system, which
almost certainly underestimates the
true number of cases. In addition to
the incubation period, some patients
report experiencing substantial delays

Table 8. Precipitation During the California and Arizona Calendar Years

Year
Annual Precipitation

(mm), AZ
Annual Precipitation

(mm), CA

2003 173.228 242.57
2004 202.692 414.528
2005 178.816 477.774
2006 138.43 233.172
2007 128.27 124.206
2008 243.332 279.908
2009 82.804 189.738
2010 232.156 509.27
2011 118.364 250.698
2012 108.712 225.806
2013 213.868 92.71
2014 212.598 242.57

Table 9. Monthly Incidence of Coccidioidomycosis per 1,000,000
Residents, Selected Counties in Arizona and California (2000–2014)

Month

# of Reported Cases
per 1,000,000

Residents (Arizona)

# of Reported Cases
per 1,000,000

Residents (California)

1 92.95431443 45.85162106
2 81.63523957 38.46853154
3 78.20629274 37.23905642
4 79.10389713 33.56534757
5 81.45724761 32.31102624
6 87.14588194 41.04605894
7 93.04145815 36.92932236
8 89.63543347 53.02804748
9 75.26866006 58.9060512
10 88.80439084 64.11905656
11 110.4812564 59.41757467
12 110.9498537 56.3356386
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between seeking care as well as coccidioidomycosis diagnosis [Tsang et al., 2010], and further delays may
occur between diagnosis and case reporting to public health. Therefore, the month to which cases are
assigned may not necessarily reflect the month that he or she was infected with Coccidioides. Earlier analyses
utilized time lags in their attempts to account for the time between exposure and symptom onset [e.g., Park
et al., 2005], though a subsequent analysis of model sensitivity quality control determined that employing
case data “as is” did not cause significant deterioration of results [Comrie and Glueck, 2005]. Future analyses
may allow for more comprehensive linkage between environmental conditions for Coccidioides growth and
observed incidence by incorporating factors that account for dispersal and human exposure, ideally with
methods to detect Coccidioides in air. Currently, laboratory detection of airborne Coccidioides DNA has only
been successful with artificially created dust clouds [Chow et al., 2016]. However, future research is needed
to enable this technology to be used for routine monitoring of Coccidioides in ambient air and to quantify
spore count.

5. Conclusions

Ultimately, despite the differing hydroclimates presented by the data in Arizona and California, in both states,
robust, significant, recurring relationships do emerge. In both states, drought tends to correlate with higher
incidence of reported coccidioidomycosis in the following year, whether that be a drier foresummer
monsoon season in Arizona or a drier winter/spring in California. In Arizona, these impacts tend to be noticed
earlier in the subsequent year, whereas in California, these impacts are noted later in the year. While other
research challenges the impact of climatic factors in Kern county, CA [Talamantes et al., 2007], this analysis
reveals relationships in California and Arizona using climatic data to produce a time series of soil moisture.

With the descriptive capacity of soil moisture verified by statistical significance tests and demonstrated over
periods between several months and over 2 years, it is possible that future predictive models could enable
public health officials to prospectively identify periods of expected increased coccidioidomycosis incidence
and notify healthcare providers and the public to remain vigilant for identification of this infection, poten-
tially minimizing delays in diagnosis. We are hopeful that this analysis, in cooperation with subsequent
research and stakeholders, will form the basis to do just that.
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